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Mesh shape preservation for flow-induced vibration problems
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Abstract

This paper describes a numerical technique that can prevent the mesh from severe distortion in flow-induced

vibration calculations. An orthogonal transformed space that is related to the physical space through a Laplacian

equation is introduced. At each time step, the mesh may deform significantly in the physical space due to structural

vibration, but the mesh nodal value in the transformed space remains constant. As long as the coordinates in the

physical space can be adjusted to render the transformed space independent of time, the mesh shape in the physical

space is preserved, even though the mesh area may enlarge or reduce significantly. For simplicity, a two-dimensional

flow-induced vibration problem is used to illustrate this method. Two side-by-side elastic cylinders in a cross flow are

considered. The Reynolds number is fixed at 200, corresponding to a laminar wake. The mass ratio is chosen to be small

so that large displacements of the cylinders can be realized. Predictions with and without mesh preservation are

compared. The difference between the two results could be as large as 25% in the prediction of the mean transverse

displacements of the cylinders. The method could be extended to three-dimensional flow-induced vibration problems

without much difficulty.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Offshore drilling and production systems, most notably tension leg platforms (TLPs), have become increasingly

popular for the exploration and production of oil fields in deep water (1000–3000m). Tension leg platforms contain a

large number of risers and tendons that span almost the entire water depth. These flexible cylinders are subjected to a

combined loading of waves and currents, and are highly susceptible to vortex-induced vibrations. In certain instances,

fluid–structure coupling could give rise to a resonant condition; thus yielding excessive vibration amplitudes that lead to

structural failure. Consequently, the prediction and control of flow-induced vibrations, particularly with the design of

offshore risers and spars, are of critical concern to the offshore oil industry.

One approach to tackle the problem of flow-induced vibrations of offshore risers and spars in close proximity is to

develop an understanding of the interactions between the near-wake flow and the structural dynamics. The problem

could be idealized by considering multiple cylinders in close proximity with each other freely vibrating in a cross-flow.

Understanding of the physics could be gained through experimental investigations, or by numerically simulating the

flow around some relatively simple arrangements of bluff bodies. The experimental approach could be very effective

when the vibration amplitudes of the structures are not excessively large, say within one hydraulic diameter of the

structures. When the vibration amplitudes become too large, the errors involved in their measurements could be

unacceptable if optical techniques are used to measure vibration amplitude directly. These errors stem mainly from the

large curvature of the structure and the necessity to maintain accuracy in the focusing of the optical beam (So et al.,
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2000). Other indirect methods, such as strain gauges and force cells, could be used to measure the strains and the forces

though. However, these alternative methods could lead to other problems not found in the use of optical techniques (So

and Savkar, 1981). On the other hand, large vibration amplitudes would give rise to excessive deformation of the

computational grid in the case of numerical simulations. Very large grid deformation would lead to errors in the

computation of the flow behavior near the surface of the structures and estimate of the surface pressure and induced

forces. These errors could contribute to incorrect predictions of the structural dynamics.

In the past, fundamental understanding of the physics of fluid–structure interactions has been gained by considering a

single cylinder in a cross flow with small to medium vibration amplitude. There are numerous experimental studies

devoted to free and forced vibration of a single cylinder. Among the more notable studies on free vibration are the work

of Griffin et al. (1973), Griffin and Koopmann (1977), Obasaju et al. (1990), Sarpkaya (1995), Khalak and Williamson

(1996), and So et al. (2000). As for forced vibration, the work of Bearman (1988), Williamson and Roshko (1988),

Griffin and Hall (1991), and Gopalkrishnan et al. (1994) can be mentioned. Through these studies and many more, the

phenomena of synchronization with the vortex-shedding frequency for free vibration and the lock-on behavior with the

imposed frequency for forced vibration were discovered and the physics associated with them were understood.

Various numerical techniques have been used to simulate this class of problems. These include grid-free methods,

such as the surface vorticity method (Lewis, 1991), and grid methods, such as finite-element methods (Mittal and

Kumar, 1999; Mendes and Branco, 1999; So et al., 2001) and direct numerical simulations (Newman and Karniadakis,

1997; Evangelinos and Karniadakis, 1999; Evangelinos et al., 2000). The numerical simulations were able to replicate

the observed phenomena for free and forced vibration of a single cylinder. In this simple case, even a large vibration

amplitude would not lead to excessive errors in the computation of the surface pressure and induced forces, and hence

the cylinder dynamics. The reason is that grid deformation is not large, because the problem could be formulated by

attaching the coordinate system to the moving cylinder. This, however, is not applicable for multiple cylinders in a cross

flow. As a result, the grids in the confined space between two cylinders could be grossly deformed depending on the

vibration amplitudes (Liu et al., 2001). It would seem that the grid-free (vortex) methods would be most appropriate for

flow-induced vibration problems with multiple structures. Unfortunately, at present, they are limited to two-

dimensional (2-D) flows and cannot be easily extended to 3-D problems.

The relatively simple case of two side-by-side cylinders in a cross flow has been numerically investigated by a number

of researchers. For example, Stansby (1981) studied this problem using an essentially inviscid discrete-vortex method,

but Chang and Song (1990) used a blending technique comprised of a finite-element method in the vicinity of the bodies

and a finite-difference method for the rest of the flow field. On the other hand, Tezduyar et al. (1990) used a finite

element formulation with the streamline-upwind/Petrov–Galerkin method (SUPG), Meneghini et al. (2001) used a

fractional step method with a Galerkin finite element formulation, while Slaouti and Stansby (1992) adopted a random-

vortex method. Most of these numerical studies have only considered the rigid cylinder case, and the interactions of

fluid and elastic structures are typically ignored due to numerical complexities. The case of two flexible cylinders was

treated by Liu et al. (2001). In their calculations, the coordinate system has to be attached to an inertial frame and

cylinder vibrations have to be accounted for by mesh deformation. Therefore, they have to limit their investigation to

cylinders with small to moderate vibration amplitudes. Otherwise, the numerical errors could be excessive. These

numerical studies were able to replicate the near-wake behavior for the rigid as well as the flexible cylinder case. They

include the various flow regimes resulting from different T/D ratios as observed in experimental investigations (Spivack,

1946; Bearman and Wadcock, 1973; Williamson, 1985; Bearman, 1995; Sumner et al., 1997, 1999; Paidoussis, 1998;

Zhou et al., 2001). Here, T is the spacing between cylinder diameters and D is the cylinder diameter.

For offshore applications, the vibration amplitudes of a single flexible cylinder in waves can be as large as 5–10D in

the inline direction and 1–2D in the transverse direction (Duggal and Niedzwecki, 1995). To simulate the fluid–structure

interaction correctly, structural vibration has to be accounted for by mesh deformation. There are several numerical

techniques to tackle this mesh movement. The arbitrary Lagrangian–Eulerian (ALE) method was introduced by Hirt

et al. (1974) in association with a finite-difference technique. The same ALE method was later developed in association

with a finite-element approach (Donea et al., 1982; Ramaswamy and Kawahara, 1987; Nomura and Hughes, 1992;

Farhat et al., 1995; Wei et al., 1995). Besides ALE, other methods, using different kinds of grid remeshing, can also be

found in the literature for the analysis of fluid–structure interactions (Hurlbut et al., 1982; Chilukuri, 1987; Lecointe

and Piquet, 1989; Mittal and Tezduyar, 1992; Zhang and Dalton, 1997; Yang et al., 1997; Liu et al., 2001). For example,

Liu et al. (2001) calculated the fluid–structure interaction for the case of two side-by-side elastic cylinders in a cross

flow. They accounted for the arbitrary motions of the two cylinders by introducing a moving mesh technique. Even

though Laplacian interpolation was used to reduce mesh deformation, the mesh still distorted significantly due to the

rather large vibration displacement, with a peak-to-peak value of about 1D. The distortion is especially substantial

when the two cylinders move towards each other, thus leading to a severe squeeze of the mesh between the cylinders.

Typical finite element methods use linear or quadratic shape functions to define the problem within each element. For
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large deformation problems, the elements must be very small to accurately predict the gradient. Consequently, it could

lead to serious mesh distortion and mesh entanglements, which render the finite-element method invalid.

All these techniques require continuous remeshing if they are used to treat fluid–structure interaction problems with

large deformation. If this tedious step is to be avoided, a technique to preserve the mesh shape whereby the numerical

calculations can be carried out accurately will have to be developed. The objective of the present study is to do just that,

i.e., to develop a numerical technique that can preserve the mesh shape even though the mesh area may enlarge or

reduce significantly from one time step to the next. A method that has been successfully developed by Hui et al. (1999)

to treat two-dimensional Euler equations, where discontinuities such as shocks, material interfaces, etc., exist in the

flow, is used to help guide the development of the present method. The formulation is first given assuming a 3-D

problem. However, as a first attempt, only a 2-D problem is used to illustrate the implementation of the method in a

numerical simulation. Its extension to 3-D problems is the topic of a separate investigation.

2. Numerical method

Three elements are of primary importance to the numerical simulation of flow-induced vibration problems. These are

the flow field calculation, the structural dynamics evaluation and the fluid–structure interaction resolution. Various

finite-difference and finite-element methods are available for the calculation of the flow field. If a N-degree-of-freedom

or an Euler–Bernoulli beam model were used to resolve the structural vibrations, standard numerical techniques are

also available. Thus, the correct simulation of flow-induced vibration hinges on how accurately the fluid–structure

interaction can be resolved. This is where the complications come in for flow-induced vibration of multiple structures

with large vibration amplitudes. The finite-difference or finite-element grid would be seriously deformed in the space

between structures and this could lead to excessively large errors in the calculation of the flow field, the surface forces

and the structural responses. Standard techniques are available for the first two parts (see, e.g., Wang et al., 2001; Liu

et al., 2001). Therefore, this paper concentrates on the third part, to resolve correctly the fluid–structure interaction. A

method to preserve the mesh shape irrespective of the grid deformation is proposed. To illustrate the implementation of

the method in a numerical simulation, two side-by-side elastic cylinders in a 2-D cross flow are considered. For the sake

of completeness, a brief description of the first two parts for this relatively simple problem is given below, while a

detailed discussion of the mesh shape preservation method is presented in Section 3.

2.1. Flow calculations

A schematic view of the problem is shown in Fig. 1. Two side-by-side elastic cylinders with fixed support at both ends

are placed in a 2-D cross flow with a free-stream velocity UN. The computational domain is a 25D� 16D rectangular

region, the upstream length is about 5D, while the downstream length is 20D, and the two cylinders are located

symmetrically about the center-line. The calculation using this domain was compared with that using a larger domain of

50D� 20D. The calculated mean drag of these two cases agrees to within 1% of each other. Even though practical

problems are usually turbulent and the Reynolds numbers (Re) are very high, in the context of this work, a

consideration of laminar flow with moderate Re is sufficient to illustrate the mesh shape preservation technique. For the

case of laminar, incompressible flows, the governing equations are

r � u ¼ 0; ð1Þ
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@u

@t
þ u � ru ¼ �rp þ

1

Re
r2u: ð2Þ

In these equations, r ¼ i@=@x þ j@=@y is the differential operator, x ¼ðixþjyÞ is the Cartesian position vector, u ¼
ðiu þ jvÞ is the velocity vector, i and j are unit vectors along the x- and y-axis, respectively, p is the static pressure, t is
time and Re ¼ UND=n is the flow Reynolds number. It should be pointed out that, for a single structure, the coordinate
system can be attached to the structure, while for multiple structures the coordinate system is attached to a reference

frame, such as the calculation domain. All the variables in the equations are dimensionless. They are defined with

respect to the physical variables (denoted here by the superscript �, except for time t) by x ¼ x�=D; u ¼ u�=UN; p ¼
ðp� � pNÞ=rU2

N
and t ¼ tUN=D: To complete the formulation, the boundary conditions are given as

(i) At the upstream far field, domain top boundary and domain bottom boundary,

u ¼ 1 and v ¼ 0: ð3Þ

(ii) At the downstream far field,

@u

@n
¼ 0; ð4Þ

where n denotes the normal direction of the curvilinear coordinates attached to the boundary.

(iii) At the surface of the cylinders,

u � n ¼ ucy � n; ð5Þ

where ucy is the velocity of the cylinders and n is the unit normal vector.

The Navier–Stokes equations are solved using a finite-element method (FEM) and the nonlinear coupling terms in

the equations are treated separately, at different fractional time steps, by an operator splitting time stepping method.

The method is suitable for both steady and transient problems and can readily be extended to include extra equations

describing additional physical effects, such as the effects of cylinder motions on the flow field and vice versa. A detailed

discussion of the numerical technique and validation of the program have been presented elsewhere (Liu et al., 2001).

Since the boundary layer is expected to be thin near the cylinder, a fine mesh is concentrated near the cylinder surface.

The number of panels is 220, the number of nodes is about 63 589, and the number of elements is numerically

determined to be about 31 589. This is adequate to resolve the velocity and the boundary layer. These numbers are

determined by using different meshes, from coarser to progressively finer meshes, until the drag coefficient is mesh-

convergent to within a prescribed tolerance of about 0.5%.

2.2. Cylinder dynamics

Wang et al. (2001) have shown that the Euler–Bernoulli beam theory can be used to calculate the structural dynamics

in flow-induced vibration problems with not much additional difficulties compared to an N-degree-of-freedom model.

On the other hand, So et al. (2001) have demonstrated that a two-degree-of-freedom (2d.o.f.) model yields results that

are essentially the same as those obtained from the beam model at mid-span of the structure. As a first attempt, the

mesh shape preservation technique is demonstrated by choosing a dynamics model that is relatively simple. Therefore,

for the sake of simplicity, the present attempt chooses a 2d.o.f. model for the cylinder dynamics. The circular cylinders

are fixed at both ends. Thus, the dynamic response of each cylinder is described by the 2d.o.f. equation,

d2v
dt2

þ
4pzs

Ur

dv
dt

þ
2p
Ur

� �2
v ¼

Cf

2Mr

; ð6Þ

where v ¼ X iþ Y j; X and Y denote the instantaneous displacements of the cylinders in the x- and y-direction,

respectively, zs is the dimensionless structural damping coefficient, Mr ¼ M=ðrD2Þ is the mass ratio, r is the fluid
density,M is the mass per unit length of the cylinder, Cf ¼CDiþCLj is the force coefficient, defined as Cf ¼ 2F=rUN

2D;
F is the instantaneous vortex-induced force vector, and Ur is the reduced velocity. The drag and lift coefficient CD and

CL; respectively, are defined similarly to Cf and the reduced velocity is defined as Ur ¼ UN=f �n D; where f �n is the

natural frequency of the stationary cylinder. Hereafter, the asterisk in f is used to denote the value of the stationary

cylinder.

Two such equations have to be solved simultaneously for the present case of two side-by-side cylinders. They have to

be resolved in a manner that would reflect the strong coupling between the fluid flow and the cylinder dynamics. This
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aspect will be discussed in more detail in the following section. Here, it is sufficient to point out that the solution yields

the vibration displacements and the velocity of each cylinder as it responds to the surrounding flow field. The

incompressible flow calculation is coupled with the cylinder response through the boundary conditions and Cf ; thus
allowing the fluid–structure interactions to be adequately resolved at each time step if the flow calculation and (6) are

solved in an iterative manner.

3. Mesh shape preservation method

Fluid–structure interaction problems generally involve moving physical domains and dynamic remeshing. For a

single structure, remeshing can be easily handled because the coordinate system can be attached to the structure. As a

result, the distortion of the mesh is not very severe and the remeshing can be carried out with little or no difficulty. For

multiple structures in a cross flow, the problem becomes quite complicated because the coordinate system can no longer

be attached to the structures, even for the relatively simple case of two side-by-side cylinders. The motions of the

cylinders will squeeze the meshes in the space between the cylinders and, depending on the vibration amplitudes, mesh

distortion could become so severe that mesh entanglements would result. When this happens, the finite-element/finite-

difference method will no longer be valid. In the present problem, the two side-by-side elastic cylinders are free to

vibrate within the flow domain. If numerical simulation of this flow-induced vibration problem were to be carried out

satisfactorily even under this most severe condition, the meshes in the space between the cylinders need to retain their

shape as much as possible even though their area has changed under the action of the cylinder motions. Therefore, a

deforming computational mesh that could retain its shape is required to accommodate the arbitrary motion of the two

cylinders.

In the following, the general formulation for the 3-D case is first discussed. The numerical implementation of the

mathematical model for the 2-D case with an arrangement of two side-by-side cylinders in a cross flow is outlined next.

Finally, the calculation details are briefly described.

3.1. Mathematical model

In general finite-element calculations, the variables in a Cartesian physical space (X, Y, Z, t) have to be transformed
to (x, Z, z, t) in a computational space (Fig. 2), such that

x ¼ xðX ;Y ;Z; tÞ; Z ¼ ZðX ;Y ;Z; tÞ; z ¼ zðX ;Y ;Z; tÞ: ð7a2cÞ

The determinant of the Jacobian of the transformation is given by

J ¼
@ðX ;Y ;ZÞ
@ðx; Z; zÞ

¼

@X

@x
@Y

@x
@Z

@x
@X

@Z
@Y

@Z
@Z

@Z
@X

@z
@Y

@z
@Z

@z

2
6666664

3
7777775
: ð8Þ

A necessary and sufficient condition for the transformation to be valid is that the determinant of the Jacobian J be

nonnegative at every point (x, Z, z). Geometrically, J represents the ratio of an elemental volume in the physical space to
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the corresponding volume in the transformed space, or

dV ¼ dX dY dZ ¼ J dx dZ dz: ð9Þ

If J is to remain finite, the interior angles of the elemental volume should not be too small or too large. Otherwise, J will

become very small and the calculation accuracy is significantly affected.

In the finite-element calculations, the surfaces of the cylinders are adjusted according to the motion of the cylinders

by means of nodal displacement (Liu et al., 2001). Consequently, when two cylinders attract each other, the meshes

between the cylinders are squeezed severely and mesh distortion and mesh entanglements could result. In order to

reduce mesh distortion, one way is to preserve the element shape but not the elemental volume. This could be achieved

by defining an orthogonal transformed space (C, F, O) that relates to the (X, Y, Z) physical space through the

Laplacian equations,

r2C ¼
@2C
@X 2

þ
@2C
@Y 2

þ
@2C
@Z2

¼ 0; ð10aÞ

r2F ¼
@2F
@X 2

þ
@2F
@Y 2

þ
@2F
@Z2

¼ 0; ð10bÞ

r2O ¼
@2O
@X 2

þ
@2O
@Y 2

þ
@2O
@Z2

¼ 0; ð10cÞ

with appropriate time-independent boundary conditions (Fig. 2). If the (C, F, O) nodal coordinates can be made
independent of time during mesh moving, i.e., the (C, F, O) value at each element node remains constant even though
the coordinates (X, Y, Z) change, then the (C, F, O) space is always orthogonal. Thus, the element shapes or the interior
angles are preserved in the (X, Y, Z) space even though the elemental volume varies in the (X, Y, Z) space (Hui et al.,

1999). These conditions can be written in terms of C=C (X, Y, Z), F=F (X, Y, Z) and O=O (X, Y, Z) as

rC � rF ¼ rF � rO ¼ rC � rO ¼ 0; ð11aÞ

dC
dt

¼
dF
dt

¼
dO
dt

¼ 0: ð11bÞ

It then follows that

dC ¼
@C
@X

dX þ
@C
@Y

dY þ
@C
@Z

dZ; ð12aÞ

dF ¼
@F
@X

dX þ
@F
@Y

dY þ
@F
@Z

dZ; ð12bÞ

dO ¼
@O
@X

dX þ
@O
@Y

dY þ
@O
@Z

dZ: ð12cÞ

The Jacobian for the transformation from the (X, Y, Z) space to the (C, F, O) space is

J1 ¼
@ðX ;Y ;ZÞ
@ðC;F;OÞ

¼

@X

@C
@Y

@C
@Z

@C
@X

@F
@Y

@F
@Z

@F
@X

@O
@Y

@O
@Z

@O

2
6666664

3
7777775
: ð13Þ

Therefore, when the mesh is remapped in the (X, Y, Z) space, the element shape in the (X, Y, Z) space is preserved even

though the element area in the (X, Y, Z) space may change significantly as long as it satisfies

dC

dF

dO

2
64

3
75 ¼ J�1

1

dX

dY

dZ

2
64

3
75 ¼

@C
@X

@C
@Y

@C
@Z

@F
@X

@F
@Y

@F
@Z

@O
@X

@O
@Y

@O
@Z

2
6666664

3
7777775

dX

dY

dZ

2
64

3
75 ¼ 0: ð14Þ

Once this condition is met, the transformation back to (X, Y, Z) and then to the computational space allow the

calculations to be carried out with a mesh where the grid angles are preserved. The relation between the transformations

is shown in Fig. 2.
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3.2. Numerical implementation

The numerical implementation of the mathematical model is now discussed. This is specified to the sample problem

considered here, namely, two side-by-side cylinders in a 2-D cross flow. At each time step, the displacement vector of the

cylinder, represented by ZðX ;Y Þ; is calculated using (6). In order to distribute uniformly the nodal displacement of the
cylinder surface throughout the physical domain between the ith and the (i+1)th time step, a Laplacian equation of

displacement at each node is solved throughout the physical domain with the displacements of the cylinders as the
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Fig. 3. Flow diagram illustrating the implementation of the mesh preservation technique.
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boundary conditions. The Laplacian equation is

r2d ¼ 0; ð15Þ

and the boundary conditions are specified as d ¼ 0 at the outside boundary and di ¼ Z i at each cylinder wall. The entire

computational mesh is adjusted by a Laplacian interpolation, which is designed to map the current mesh onto an

intermediate mesh (X P;Y P), specified by the displacements of the elastic cylinders. This intermediate mesh is placed

between the ith and the (i+1)th time step (Fig. 3). The superscript P is used to denote the variables in this intermediate

mesh. Based on this mesh, the intermediate (CP;FP) space can be determined by solving (10a) and (10b). Then

the intermediate mesh is adjusted to satisfy (14), and this shape-preserved mesh is used for the calculation at the next

time step.

The task in this moving mesh scheme is to find Xnþ1 ¼ Xnþ1ðX ;Y Þ at the (i+1) time step from Xn at the i time step

(Fig. 3) with the stipulation that the new mesh satisfies (14). In the physical domain RðtÞ; the four boundaries, AB; BC;
CD and AD; are orthogonal to each other, as shown in Fig. 4. Therefore, the Laplacian equations (10a) and (10b) take
on the following boundary conditions; C=�5 on AD; C=20 on BC; rC � n=0 on AB and CD; C=initial X

coordinates on the cylinder surface for (10a) and F=�8 on AB; F=8 on CD; rF � n=0 on AD and BC; F=initial Y

coordinates on the cylinder surface for (10b). For simplicity, the boundary value on AB; BC; CD and AD is taken to be

the (X, Y) coordinates, but they can be any value theoretically.

The boundary condition on the cylinder surfaces is the most crucial, and its value should remain constant at all time.

Eq. (14) can be rewritten as

Cnþ1ðXnþ1Þ ¼ CnðXnÞ þ rC � ðXnþ1 � XnÞ; ð16Þ

Fnþ1ðXnþ1Þ ¼ FnðXnÞ þ rF � ðXnþ1 � XnÞ: ð17Þ

However, from (16) and (17), Xnþ1 cannot be determined directly. Therefore, an iterative procedure is required. Using

Taylor expansion, the following expressions for C and F can be written down:

Cnþ1ðXnþ1ÞECPðXPÞ þ rCP � ð *X
nþ1

� XPÞ; ð18Þ

Fnþ1ðXnþ1ÞEFPðXPÞ þ rFP � ð *X
nþ1

� XPÞ: ð19Þ

where *X
nþ1
is the target location, and *X

nþ1
-Xnþ1: Since the (C; F) space is time independent, it follows that

Cnþ1ðXnþ1Þ ¼ CnðXnÞ; ð20Þ

Fnþ1ðXnþ1Þ ¼ FnðXnÞ: ð21Þ

Thus, the Taylor expansion of (16) and (17) can be reduced to

CnðXnÞ �CPðXPÞErCP � ð *X
nþ1

� XPÞ; ð22Þ

FnðXnÞ � FPðXPÞErFP � ð *X
nþ1

� XPÞ: ð23Þ

From (22) and (23), *X
nþ1

can be determined. However, (22) and (23) are only approximations, the new values of *Cnþ1

and *Fnþ1 at the new location *X
nþ1

are still not equal to Cn and Fn; but much closer than CPand FP were. Therefore, an

iterative procedure of (22) and (23) is required to achieve the final target where *Cnþ1 ¼ Cn and *Fnþ1 ¼ Fn: This
procedure of iterating for *X

nþ1
is illustrated in Fig. 3.

Since *X
nþ1

is not a nodal point of the intermediate mesh any more after being moved from XP; the values of *Cnþ1 and
*Fnþ1 at *X

nþ1
are not readily known. Actually *X

nþ1
may not necessarily be within the same mesh. In order to find *Cnþ1

and *Fnþ1; a new intermediate mesh is formed based on the new locations of *X
nþ1

(Fig. 3). The Laplacian equations

(10a) and (10b) are then solved for the (C, F) field on the new intermediate mesh. Using the new intermediate mesh and
the new solutions of (C, F) the above procedure of adjustment can be repeated until a preset tolerance of Cn � *Cnþ1

and Fn � *Fnþ1 is met. In this study, the iterative process takes only two to three iterations before the norm of

Cn � *Cnþ1 and Fn � *Fnþ1 for all nodes goes to below 10�5.

3.3. Calculation details

During the calculation, the reference frame is fixed at the far field; i.e., the cylinders are free to vibrate within the

calculation domain. At each time step, the fluid flow is solved using the finite-element method. The force on each

cylinder is calculated by integrating the pressure and the wall shear stress on the surface. This is then taken as the force
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input to (6) and the response of each cylinder is calculated by solving (6) using the Runge–Kutta method. Each cylinder

is moved according to the displacement, the mesh is adjusted to preserve the grid angle, and the mesh is remapped

according to the mesh adjustment and cylinder motion. The flow field is solved again using the cylinder velocity as the

boundary condition. Finally, the whole process is repeated in an iterative way so that the interactions between the fluid

and the cylinders are accounted for properly.

The question of grid independence has been investigated by So et al. (2001) for a single cylinder and Liu et al. (2001)

for two side-by-side cylinders. They found that, in general, a fine mesh is needed near the cylinder surface. The final

number of panels, nodes and elements is as specified in Section 2.1. With this mesh, the calculated mean CD is mesh-

convergent to within 0.5%. Using the mesh adjustment technique, the original shape of the mesh element is preserved

very well. Details of mesh adjustment and its possible effects on the calculated vortex-induced forces are discussed in the

following sections.

4. Examples on rigid cylinders

In order to demonstrate the effect of mesh deformation on the calculated lift and drag force, two examples of

unidirectional laminar flow past rigid cylinders are considered; one a single cylinder, the other a pair of side-by-side

cylinders in a cross flow. The flow around the cylinders and the resulting forces are calculated using an undeformed

mesh and a distorted mesh. The undeformed mesh is generated using Fastflo (Stokes, 1994) in the same manner as So

et al. (2001) and Liu et al. (2001) have done in their calculations. For the single cylinder case, the deformed mesh is

generated by initially placing the cylinder at 1.2D below the calculation domain symmetry line and then moved to the

symmetry line to deform the mesh. Once deformed, the mesh remains unchanged because the cylinder has no motion in

this case. The calculations are then carried out using this deformed mesh. For the case of two side-by-side cylinders, the

undeformed mesh is again generated using Fastflo by specifying T/D=3.0. The deformed mesh is generated by placing

the two cylinders initially at T/D=5 and then move towards each other to give a T/D=3. Thus, the mesh between the

cylinders is squeezed and will give rise to a deformed mesh much like that found in the single cylinder case. Again, the

deformed mesh remains unchanged in the course of the calculations. The Re for these calculations is chosen at 200. At

this Re, the wake flow is still laminar so there is no question of the effect of transition to turbulence. The computational

domain is a 25D� 10D rectangular region, the upstream length is about 5D, while the downstream length is 20D, and

the cylinders are symmetric about the center-line.

4.1. Single cylinder result

For a single cylinder in a cross flow at Re=200, Roshko (1961) reported a mean drag coefficient, %CD=1.38, and a

Strouhal number, St ¼ 0:18: Other measurements on vortex shedding give a range for St from 0.17 to 0.196 (Roshko,

1954; Williamson, 1991). This problem has also been simulated by a number of researchers using a variety of numerical

methods, ranging from random-vortex method to finite-volume method. Some of the more notable simulations are

given by Braza et al. (1986), Borthwick (1986), Franke et al. (1990), Rogers and Kwak (1990), Sa and Chang (1991), Li

et al. (1991), Stansby and Slaouti (1993), Zhang and Dalton (1997), Zhou et al. (1999), Farrant et al. (2001) and

Meneghini et al. (2001). These calculations give a value for %CD that varies from a low of 1.02 to a high of 1.476. Since

calculations tend to over-predict %CD by about 5% and the measured value reported by Roshko (1961) is 1.38, the

predicted value of 1.476 is quite reasonable. In terms of St, the predicted value ranges from a low of 0.162 to a high of

0.200. Thus, the predicted range is larger than the measured range. Therefore, in attempting a comparison between the

present calculations with and without a deformed mesh, these variations should be borne in mind. Another point to

note is the different t the calculation is carried forward to. Failure to achieve true stationarity in the predicted variables

could have contributed to the differences observed in the reported predictions.

The undeformed and deformed mesh chosen for this problem is shown in Fig. 5a and b, respectively. Even though the

triangular mesh is unstructured, the grid is nearly symmetric about the cylinder. The enlargements of the undeformed

and deformed mesh are shown in Figs. 5c and d, respectively. It can be seen that the mesh closest to the cylinder surface

is deformed the most and the vertical height in the closest mesh is compressed by more than 80%. The calculated %CD

from the undeformed and the deformed mesh are compared in Table 1 together with some of the more reliable

measured and predicted results found in the literature. Present %CD calculations are closer to the measured value and so

is the predicted St. In general, the deformed mesh gives rise to slightly smaller calculated results, particularly for the

root mean square lift and drag coefficients, C
0

D and C
0

L; respectively. Their difference is within the range reported for the
different numerical simulations. However, the calculated results from the undeformed and deformed mesh are quite

consistent and the differences noted are real because the same numerical technique has been used to obtain the results.

ARTICLE IN PRESS
R.M.C. So et al. / Journal of Fluids and Structures 18 (2003) 287–304 295



The only difference is in the structure of the mesh. This result essentially verifies the speculation that the effect of mesh

distortion on the calculated forces is not very significant in the case of a single cylinder, because the deformed mesh is

chosen to represent its motion with vibration amplitude of 1.2D.

4.2. Two side-by-side cylinders

No reliable measurements for the case where Re=200 and T/D=3.0 can be found in the literature. However, a few

calculations at the same conditions are available. Among the more recent ones are the random vortex simulation study

of Slaouti and Stansby (1992) and the finite-element calculation of Meneghini et al. (2001). These calculations show that
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Fig. 5. Undeformed and deformed grid comparison for one rigid cylinder in a cross flow.

Table 1

Comparison of calculated results obtained using a undeformed mesh and a deformed mesh with measurement for a single rigid cylinder

at Re=200

%CD C0
D C0

L St

Measurement (Roshko, 1954) — — — 0.17–0.19

Measurement (Roshko, 1961) 1.38 — — 0.18

Measurement (Williamson, 1991) — — — 0.196

Finite-difference method (Borthwick, 1986) 1.02 — — 0.188

Finite volume method (Braza et al., 1986) 1.35 — 0.54 0.200

Finite volume method (Franke et al., 1990) 1.31 — — 0.194

Upwind difference scheme (Rogers and Kwak, 1990) 1.29 — 0.46 0.185

Finite-difference method (Sa and Chang, 1991) 1.13 — — 0.186

Finite-element method (Li et al., 1991) 1.17 — 0.35 0.180

Random vortex method (Stansby and Slaouti, 1993) 1.317 — 0.248 0.166

Finite-difference method (Zhang and Dalton, 1997) 1.25 — — 0.196

Vortex-in-cell method (Zhou et al., 1999) 1.476 — 0.219 0.162

Boundary element method (Farrant et al., 2001) 1.36 — 0.50 —

Finite-element method (Meneghini et al., 2001) 1.30 — 0.47 0.196

Present method with undeformed mesh 1.333 0.027 0.431 0.180

Present method with deformed mesh 1.309 0.024 0.404 0.178

Undeformed and deformed mesh difference (%) 1.85 12.9 6.3 1.28
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there are two distinct wakes behind the cylinders and that the vortex-shedding frequencies from the two cylinders are

essentially identical. This case has also been calculated by Liu et al. (2001). Their results compared well with those

reported by Slaouti and Stansby (1992), except for the root mean square fluctuating forces. The present comparison is

made with these three cases using a deformed mesh generated by first putting the cylinders at T/D=5 and then moving

them towards each other until T/D=3.0. Thus, the grid between the cylinders is squeezed by about 80%. From this

point on, the subscripts 1 and 2 are used to denote cylinders 1 and 2, respectively, as indicated in Fig. 1. All the results

are tabulated in Table 2 for comparison. It should be pointed out that the results reported by Slaouti and Stansby

(1992) and Meneghini et al. (2001) are calculated to t=200, while the present results are calculated to t=1000.
In this case, there are two distinct vortex streets and the vortex-shedding frequencies are essentially identical. All three

calculations give this behavior; however, the predicted shedding frequency varies from a low of 0.19, given by the

present calculations, to a high of 0.215, given by Slaouti and Stansby (1992). Similarly, the prediction of %CD also varies

from a low of about 1 to a high of 1.41. These differences could be due to the fact that the signals are not quite

stationary for the cases reported by Slaouti and Stansby (1992) and Meneghini et al. (2001). As a result, their calculated
%CD could include the contribution of the transient behavior of the developing wake flow. In the previous results

reported by Liu et al. (2001), the calculations were only carried out to t=500. However, it was found that the force and
displacement signals were not exactly stationary at t=500. Therefore, their calculations were repeated and carried out
to t=1000 to achieve a stationary state for all relevant quantities. The results thus obtained are slightly different from
those reported earlier by Liu et al. (2001). As shown in the single cylinder case, the present finite element method gives a

predicted %CD that is lower than that given by a vortex method (Zhou et al., 1999). Similarly, this is also observed in the

case of two side-by-side cylinders. Unlike the single cylinder case, the highest value is predicted by the finite-element

method of Meneghini et al. (2001). The present method and that of Meneghini et al. (2001) replicated the repelling

behavior correctly. It is obvious that the vortex method (Slaouti and Stansby, 1992) fails to predict this behavior. The

undeformed grid results, other than %CL and fs; are slightly higher than those deduced from the deformed grid. It should

be pointed out that the values of the predicted C
0

D given by the present method using the undeformed and deformed grid

are approximately equal, and they differ substantially from the predictions of Slaouti and Stansby (1992). Whether

these predictions are correct remains to be verified. The fact of the matter is that the undeformed and deformed grids

give different results, especially those of %CD and %CL:

5. Two elastic cylinders in a cross flow

Having studied the effect of mesh distortion on the calculated vortex-induced forces on a single cylinder and two side-

by-side cylinders in a cross flow, the next step is to examine this effect in the case where fluid–structure interaction plays

an important role in the whole problem. Liu et al. (2001) have investigated the case of two freely vibrating cylinders in a

cross flow with the cylinders arranged side-by-side and Re=200. Three different mass ratios were studied, ranging from

Mr=7 to 66. In Liu et al.’s (2001) calculations, the parameters T/D, Mr, Ur and zs were chosen so that the cylinders will

not vibrate to the extent that they would touch each other when T/D, Mr and zs were smallest. With a combination of T/

D=3.0, Mr=10, Ur=5 and Mrzs=0.3, Liu et al. (2001) found that the peak-to-peak transverse amplitude of vibration

of the cylinders is slightly less than 1D. In other words, at an instant when the cylinders moved towards each other, the

gap between the cylinders was reduced from 2D to 1D and the mesh was squeezed by at least 50%. In some cases, the
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Table 2

Comparison of the calculated results for two side-by-side rigid cylinders at Re=200 and T/D=3.0 with other results

Slaouti and Stansby (1992) Meneghini et al. (2001) With undeformed grid With deformed grid

%CD1 1.23 1.41 1.076 1.057

C0
D1 0.11 — 0.019 0.016
%CD2 1.22 1.41 1.077 1.046

C0
D2 0.07 — 0.017 0.017
%CL1 0.14 0.10 0.114 0.129

C0
L1 0.71 — 0.202 0.196
%CL2 0.00 �0.10 �0.111 �0.135

C0
L2 0.64 — 0.200 0.177

fs1 0.215 0.200 0.192 0.193

fs2 0.215 0.200 0.192 0.193
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mesh was squeezed by more than 80%. The squeezing of the mesh was also found when the cylinders moved away from

each other, but it occurred on the free stream side rather than in the gap. For this case, vortex shedding is anti-phase.

This behavior was found irrespective whether the cylinders were moving away or towards each other. As a result, two

parallel vortex streets were formed in the wake of the two side-by-side cylinders. Currently, there are no data available

to verify this simulation (Liu et al., 2001). However, this case gives rise to severe mesh distortion, so it could be used as

an example to test the effectiveness of the mesh shape preservation method.

The undeformed grid for this case is again generated using Fastflo and grid distortion is allowed when the mesh shape

preservation method is not invoked. Thus, this calculation is the same as that carried out by Liu et al. (2001). When the

mesh shape preservation method is employed the distorted grid is transformed to give a mesh whose shape is preserved.

The resulting grid for the former case where the grid is allowed to deform and the latter case where the mesh shape is

preserved are plotted in the same figures. In each figure, there are six panels. The top two panels show the original mesh,

the middle two panels depict the mesh without the preservation method applied while the bottom two panels the mesh

with the preservation method applied. The instant when the two cylinders are at their maximum separation is shown in

Fig. 6, while Fig. 7 shows the instant when they are at their minimum separation. Mesh deformation can be estimated

for both situations; it is about 83% for the case shown in Fig. 6 and about 20% for Fig. 7. It is clear that the

method is able to restore the grid to its original shape but not the area of the mesh elements. The mesh shape

preservation and the calculation are carried out with full fluid cylinder coupling, in order to account for fluid–structure

interactions properly.
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Fig. 6. Grid distribution with and without mesh shape preservation for two elastic cylinders (Mr=10) in a cross flow at an instant

when they are furthest away from each other.
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The calculated statistics of the vortex-induced forces and displacements are tabulated in Table 3 for comparison.

There are significant differences between those values obtained with and without mesh shape preservation. In general,

the values deduced with mesh shape preservation are higher than those without. This is especially true for cylinder 2,

where the difference in %CL2 and %Y2 between the two sets of values is as large as 25%, even though the values themselves

are quite small. The difference in C0
D1 and X 0

1 is also quite substantial, greater than 10%. Presently, there are no

measurements to verify the correctness of these values. However, the effectiveness of the mesh shape preservation

method is clearly shown in this calculation.

The time series of CD; CL; X and Y for the two cylinders are shown in Figs. 8–11, respectively. It is clear from the

time series that stationarity has been achieved as early as t=200. There is no time lag between the two sets of signals;
thus indicating that the shedding frequency deduced from these signals is essentially the same (Table 3). In general, the

signals deduced from the case where the mesh shape preservation technique has been used have slightly higher peaks.

This explains why the calculated statistics are larger. To further verify that the shedding frequency deduced with and

without mesh shape preservation is the same a sample spectral density of Y1 is compared in Fig. 12. It can be seen that

the shedding frequency deduced from the two methods is the same. However, there is a slight difference in the spectral

density resulting from the difference in cylinder vibrations.

It is obvious that the distorted grid does not significantly affect the calculated vortex shedding and wake behavior.

Only the calculated statistics of the vortex-induced forces and the cylinder displacements are influenced by grid

deformation. The present method alleviates grid deformation in the calculations of these variables and could possibly

contribute to an improvement on the accuracy of these variables in cases where the flow-induced vibrations are very

large.
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Fig. 7. Grid distribution with and without mesh shape preservation for two elastic cylinders (Mr=10) in a cross flow at an instant

when they are closest to each other.
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In order to further illustrate the necessity of this mesh preservation method in the calculations of flow-induced

vibration problems, Mr was reduced to 7 so that Mrts=0.21, while keeping all other parameters constant in the two

side-by-side elastic cylinders case treated before. In this calculation, it was found that the gap between the two cylinders

could be as small as 0.2D, but the cylinders remained separate and did not touch each other. The transient calculations

showing the vibration of the cylinders with and without using the mesh preservation method are plotted in Fig. 13. The

left column (Figs. 13a and c) shows the calculated results where the mesh preservation method has been used, while

the right column (Figs. 13b and d) the corresponding results obtained without using the method. The time series of the

cylinders for each case are plotted in the first row of the figure and the enlarged grids are shown in the bottom row. With

the use of the mesh preservation method, it was possible to carry out the calculations to the stationary state. The

enlarged grid at the location where the gap was 0.2D (Fig. 13c) clearly shows that the mesh shape has been preserved

and that is why the calculations can be continued. On the other hand, mesh entanglement occurred when the gap

reached 0.5D for the calculation where the mesh preservation method has not been used (Fig. 13d). Consequently, the

calculation cannot be continued beyond t=110. The only difference between this case and the previous one is Mr,
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Fig. 8. Comparison of the drag coefficient between the case with and without mesh shape preservation: - - - - -, without preservation; —,

with preservation.

Table 3

Comparison of the calculated results for two side-by-side elastic cylinders at Re=200, T/D=3.0, Mrzs=0.3 and Ur=5.0 obtained with

and without mesh preservation

With mesh preservation (A) Without mesh preservation (B) B � A

A
� 100%

%CD1 1.16 1.13 �2.6
C0

D1 0.601 0.666 10.8
%CD2 1.16 1.12 �3.6

C0
D2 0.628 0.670 6.7
%CL1 0.1716 0.1798 4.8

C0
L1 0.676 0.704 4.2
%CL2 �0.1688 �0.2050 21.5

C0
L2 0.668 0.724 8.2
%Y1 0.00489 0.00494 1

Y1max�Y1min 0.909 0.966 6.27

Y 0
1 0.318 0.331 4
%Y2 �0.00482 �0.00600 24.5

Y2max�Y2min 0.895 0.969 8.27

Y 0
2 0.316 0.340 7.7
%X1 0.0334 0.0326 �2.4

X1max�X1min 0.614 0.695 13.19

X 0
1 0.214 0.241 12.6
%X2 0.0335 0.0320 -4.5

X2max�X2min 0.657 0.697 2.63

X 0
2 0.227 0.243 7

fs1 0.1996 0.1996 0

fs2 0.1996 0.1996 0
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which is reduced from 10 to 7. This rather small reduction in Mr is sufficient to clearly demonstrate the merit of the

mesh preservation method.

6. Conclusions

In numerical simulations of flow-induced vibration problems with multiple structures in a cross flow; quite often the

grid between the structures is severely distorted as a result of large amplitude vibrations of the structures. For some

situations, the grid could be so severely deformed that grid entanglement results. When that happens, the finite element/

difference method used to resolve the fluid–structure interaction is no longer valid. This paper proposes a method to

preserve the mesh shape in the grid but not the area of the mesh. Therefore, the method allows the most severely

deformed grid to retain its original shape and hence facilitates continuation of the numerical simulation. The effect of

grid distortion on the predicted results of the vortex-induced forces and the structural displacements is first assessed

assuming a single rigid cylinder in a cross flow. Then, the method is extended to treat two side-by-side cylinders in a

cross flow where the two cylinders are assumed to be rigid as well as elastic. For the rigid cylinder cases, the cylinder or

cylinders are moved by about 1D to the center-line or towards each other to generate the distorted grid. In the freely

vibrating case, the motion of the cylinders distorts the grid at every time step. The mesh shape preservation method

when applied to the distorted grid restores the mesh to its original shape but not its original area. Calculations have

been carried out with and without invoking the mesh shape preservation method and the calculated statistics of the

induced forces and cylinder displacements for cases where Mr>7 are compared. Results show that the difference is

quite substantial for certain variables, such as the transverse vibration amplitude and the lift force. However, the

distorted grid has little effect on the calculated vortex-shedding frequency of the cylinders. This is true for both rigid

and elastic cylinders considered. As Mr was reduced to 7, mesh entanglement occurred if the mesh preservation method

was not invoked and the calculation was terminated when the cylinder gap was reduced to 0.5D. With mesh

preservation applied, calculation was possible until cylinder vibrations have reached their stationary state. These

results, therefore, show that the mesh shape preservation method is quite valid and necessary for flow-induced vibration

problems with severely deformed grids.
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Fig. 13. Grid distribution with and without mesh shape preservation for two elastic cylinders (Mr=7) in a cross flow at the location

where the gap is smallest.
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